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Abstract

Users of digital image libraries are often not interested in image data per se but in derived
products such as catalogs of objects of interest. Converting an image database into a usable
catalog is typically carried out manually at present. For many larger image databases the
purely manual approach is completely impractical. In this paper we describe the development
of atrainable cataloging system: the user indicates the location of the objects of interest for
anumber Of training images .and the system learns to detect and catalog these objects in the
rest of the database. In par titular we describe the application of this system to the cataloging
of small volcanoes in radar images of Venus. The volcano problem is of interest because of the
scale (30,000 images, order of 1 million detectable volcanoes), technica difficulty (the variability
of the volcanoes in appearance) and the scientific importance of the problem. The problem of
uncertain or subjective ground truth is of fundamental importance in cataloging problems of this
nature and is discussed in some detail. Experimental results are presented which quantify and
compare the detect ion perfor mance of the system relative to human detection performance. The
paper concludes by discussing the limitations of the proposed system and the lessons learned of
generd relevance to the development of digital image libraries.

Keywords: digital image libraries, pattern recognition, science data analysis, volcanoes, Venus,
SAR, detection, classification, lcarning, remote sensing



5 1 Introduction

Inrecent years there have been significant advances in image acquisition and storage technologies.
Large iimage dat abases in fields as diverse, as astronomy, geology, and diagnostic medicine are
increasingly routine. However, our ability to analyze data lags fat behind our ability to collect
data. Users of image databases, such as astronomers, geologists, and medical experts, are not
interested in the inhage data per se. The images are but an intermediate representation from which
hypotheses can be inferred about the physical properties of the targets being imaged. Many image
database users wish to work with derived image products, such as catalogs of objects of interest.

For example, in planctary science, the scientific process involves examination of images (and
other data) from planetary bodies such as Venus and Mars, the conversion of these images into
catalogs of geologic objects of interest, and the use of these catalogs to support, refute, or originate
t heories about t he geologic evolu t ion and current state of the planet. Typically these catalogs
contain information abou t the location, size, shape, and general context of the object of interest
and arc published and made gencerally available to the planetary science community [1].

In the last 3(I yecars remote spacecraft have provided far more detailed planetary images than
were previously available, and subsequently our understanding of the physical geology of the planets
has increased substantially. Nonetheless much remains to be discovered and the scientific process
is ongoing. Traditionally the analysis of planetary surface images has been a manua process where
much of the work was carried out by geologists analyzing hard-copy images. There Is currently a
significant shift to computer-aiclcd processing of planetary data, a shift which is driven by the public
availability of many planetary datasects in digital forin on CD-ROMS [2]. Thus far, however, the
geologist’s routine remains largely manual: the computer is used as a storage and display tool, but
is hardly used for automated analysis. Hence, what could potentialy be turned into a large digital
image library is simply stored as raw image data. Given the volume of data being collected (see
for example Section 3) purely manual cataloging of objects of interest is completely impractical.
Thus, as in the volcano problem discussed later, scieritists are manually cataloging small portions
of the datasct and inferring what they can from thesc data [3].

In this paper wc describe a system for automatically locating small volcanoes on the surface of
* Venus. The cataloging; and study of volcanoes on Venus is itself an important scientific problem, yet
it can also be considered a typical instance of a common problem ‘in image database exploration:
a user can identify a number of examples of an object of interest and would like the system to
automatically find and characterize all such objects in the image database. Our approach relies
heavily on the notion that the system is trainable and can learn a detection model from the
identified examples. We view this as being far preferable to the primary alternative which would
be to program a special-purpose model for each object. With the trainable system approach, a user
can modify the detection model at will in an interactive manner by identifying specific training
examples of interest in a natural manner. Thus, the benefits are clear. Whether the trainable
approach is technically feasible is not clear: we will return to this issue in Section 8.

The main issues discussed in this paper are:

o The collection and handling of training data from the users
. The implicit subjective nature of image labelling by human experts,

. The evaluation and comparison of human and algorithm performance in the absence of abso-
lute ground truth.

. The technical issues of detection, feature extraction, and classification which are critica to
designing trainable cataloging systems.

Each of t hcsc issues is cl irect ly relevant to the problem of creating digital image libraries from raw
image data. In particular, we focus on the problem of converting, original image data into digital
catalogs which provide a high-level link to the original data for access and exploration.

The paper begins by discussing relevant prior work on the detection of natural objects in
remote-scrising imagery (Section 2). Section 3 describes the Magellan mission to the planet Venus
and provides more motivation and detail about the volcano detection problem. The nature of the
Magellan images is discussed in Section 4. Section 5 describes how the training data is generated and
focuses in particular on the problems associated with not having absolute ground truth. In Section
6 a three-stage volcano detection systemn is introduced and described in some detail. Experimental



results are present ed in Sect ion 7, where the volecano detection system is quantitatively evaluated
with respectt o hunan det eetion performance on several test sets of Magellan images. Finally,
Section 8 discusses t lie lessons learned from this project and their relevance to more general digital
image library problems.

2 Prior Work on Detecting Natural Objects in Remote-Sensing
Data

Prior work using patternrecognition withremote sensing data has largely focused on earth-based
data and the classification of homogencous regions into vegetation types (for example) [4]. Most
work onthe detection of ohjects inremotely-sensed data has largely been limited to the detection
of man-made objects withwell-defined edge characteristics. Indeed in an overall sense there is little
prior work on the detection of muitiple natural objects in a noisy environment - many techniques
implicitly assume that t he object of interest has alrecady been located in the image and focus on the
problem of finding good discriminants to compare object hypotheses. Hough transform methods
have been used inthe past for detection of circular geologic features in SAR data [5, 6] but without
great success. Inthe particular context of the volcano detection problem, Wiles and Forshaw [7]
described a matched filtering approach for detection of small volcanoes in the Magellan data, In
Section 7 we will see that matched filtering alone appears insufficient to achieve high detection rates
for this problem. Note aso that these methods involve relatively little, if any, training based on
expert-sulg)lic(l data. In contrast, the approach proposed here emphasizes the notion of a trainable
system which t he nser can customize at will by providing specific examples of the object to be
detected.

Problems with many similar characteristics to the volcano problem occur in medical diagnostic
imaging, for example antomated analysis of tissue abnormalities in pathology or detection of tumors
in magnetic resonance imaging. Ingencral t hesc methods take great advantage of the fact that they ».
are inmntrolled environment and, henee, can usc a clearly contrasting background with reference 4
point,.@ This leads to a much higher effective signal-to-noise ratio than one encounters in the Venus
volcano images.

3 Venus volcanism

. T g o, L1875
3.1 Background on the Magellan Mission to Venus re T,
e
On May 4&?1989,1,110 Magellan spacecraft was launched from Earth on a mapping mission to Venus.
Magellan cittered an elliptical orbit around Venus in August 1990 and subsequently transmitted
back to Isarthmore data than that from al past planetary missions combined [8}. In_ particular,
a set of approximately 30,000071024 x 1024 pixel, synthetic aperture radar R), 75m/pixel A”
resolution imagces of the planct’s surface were transmitted esulting in a high resolution map of
97% of the surface of Venus. The total combined volume of pre-Magellan image data available
from various past US and USSR spacecraft and groulld-based observations represents only a tiny
fraction of the Magellan data set. Thus, the Magellan mission has provided planetary scientists
with an unprecedented data set for Venus science analysis. It is anticipated that the study of the
Magellan dataset will continue well into the next century [1, 9, 10].

Tile Magcllan image s+t IS @ unique testbed for prototyping digital image library tools: it
is of significant scientific importance, it is large enough that automated and semi-automated tools
arc essential if cven a fraction of the data is to be utilized, it has an enthusiastic user community
(planctary geologists) who are ready to use t hcse tools, and it contains significant technical chal-
lenges in t erms of patternrecognition and iiage analysis (as we shall see in more detail in this
paper). All the scientific data from t he mission has been publicly released by NASA in digital form
on CHO-ROMS ensuring widespread low-cost access. ]Jn Appendix 1 wc describe how the data used
in the experiments in this Paper can be obtained.




3.2 The Scientific Importance of Venus Volcanism

The location, identification, and cataloging of volcanoes are key components in the study of Venus.
To quote Saunders et a [3]:

Volcanisin is the most widespread and important geologic phenomenon on Venus. Vol-
caniclcatures are broadl y distributed globally, unlike plate boundary concentrations
typical of Farth. The most widespread t errain type on Venus is lowland volcanic plains.

Understanding clustering characteristics and the global distribution of the volcanoes is fundamental
to understanding t he regional and global geologic evolution of the planet [3], Generating a compre-
hensive catalog including the size, location , anid other relevant informat ion about each volcano is
clearly a pre-requisite for more advanced studies suct | as cluster analysis of the volcano locations,
This catalog can potentially provide the data necessary to answer basic questions concerning the
%golenvsi(:s of Venus, which is of’ partjcular interest since geologically, Venus is Earth's sister planet.
ypical geopliysical'questions about Venus volcanism concerri eruption mechanics, the relationship
between voleanoes and local t eci onic structure, and the pattern of hicat flow within the planet.
Geologists estimate the nunber of small volcanoes (diameter < 15km) on the planet to be
~10° [I1]. These volcanoes are t hought to be widely scattered throughout 30,000 1Mbyte images.
Manually locating these volcanoces is simply not feasible. We have typically found in our experiments
that humans t end to fat igne quickly after labelling on the order of 50 or 100 images over a time-scale
of a few days. Thus, large-scale sustained cataloging by geologists is not realistic even if they could
devote tlie necessary time to this task. In this context, an automated system for the detection and
cataloging of volcanocs has considerable utility. From a more general digital library perspective we
arc targeting the automat ion of the expensive and onerous cataloging step which is necessary to
turn to a collection of images into an indexed and accessible digital library.

4 Magellan Imagery

A fundamental objecctive of the Magellan mission was to provide global mapping of the surface of
Venus. The mappmg was performed using synthetic aperture radar (SAR) because of its ability
to penetrate the dense cloud cover surrounding Venus. The wavelength of the radar was 12.6 cm
corresponding to a frequency of 2.385 GHz. Theincidence angle varied from 15° to 45° and the
number of looks varied from 5 to 16. Because the number of looks is relatively high this results in an
cffective averaging of the speckle noise which is commonly observed in SAR images: conseguently
the noise in the Magellan images is closer to the standard additive white noise typical of optical
hnaging. A complete description of the Magellan SAR imaging system is given in [12].

A standard Magellan image consists of 1024 x 1024 8-bit pixels, where the pixels are 75m in
resolution for the results referred to in this paper, Si nail volcano diameters are typicaly in the
2- 3km range, i.c., 30 to 50 pixels wide. Voleanocs are often spatially clustered in volcano fields.
As a consequence, most of the volcanoes are expected to be found in about 10-20% of the total
number of images, and withinthese images there may number as many as 100 or more volcanoes,
although typically the nimber isin the 10-50 range.

Figure Ishows a 30k X 30k area imaged by Magellan (illuinination from the left). This area
located near (lat 30°N,lon 332°) contains many small volcanoes. Observe that the larger volcanoes
in this figure have the classic radar signature one would expect based on the topography; that is, the
upward sloping surface of the volcano in near-range (close to the radar) scatters more energy back
to the sensor than the surrounding flat plains and therefore appears bright. The downward sloping
surface of t he volcano in far-range scal, ters ericergy away froin the sensor and therefore appears
dark, Together, these effects causet he volcano to appear as a left-twright bright-dark pair within
a circular planimetric outhne. Near the center of the volcanoes, there is usually a summit pit that
appears as a dark- bright pair because t he radar energy backseat ters strongly from the far-range
rimm. Small pits, however, mayv not appear or inay appear as only a bright spot due to the image
resolution.

The topography-in duced features described above are the primary visual cues that geologists
report using to locate volcanoes. 1 low’ever, there are a number of other, more subtle cues. The
apparcnt hrightness of’ anareain aradar image depends not only onthe macroscopic topography
but also onthe surface roughnessrelative to the radar wavelength. Thus, if the flanks of a volcano



Figure 1.  Magellan SAR dill>-ilna~c: A 30km x 30km region containing a number of small
volcanoes. lllumination is from the left; incidence angle ~ 40°.

have different roughness properties than the surrounding plains, the volcano may appear as a bright
or dark circular area instcad of as abright-dark pair. Volcanoes may also appear as radial flow
patterns, texture differences, or disruptions of graben. (Grabenare ridges or grooves in the planet
surface, which appcar asbrightlinesin the radar imagery -- sec Figure1.)

5 obtaining a Labeled Training Database

In the volcano-location problem, asin many remote sensing applications, validated ground truth
data does not exist. Ductot hesurface temperature of 482°C no remote landers have visited the
surface of Venus apart from a Russian robotic lander which melted within a few minutes. Despite
the fact that the Magellan data is the best imagery ever obtained of Venus, geologists cannot
aways determine with 100% certainty whether a particular image feature is indeed a volcano. This

inherent ambiguity is duc to factors such as image resolution, signal-to-noise level, interpretation
of the SAR imagery, andso forth.




Sample Volcanoes

Category 1:

Categery 2;

Category 3:

Catepory 4

Figure 2: A selection of local regions as labeled by the geologists and their respective categories.

5.1 Volcano Categories

‘1'here is considerable subjective variability in volcano labelling: for the same image, different
geologists produce different label lists, and even the same geologist produces different lists over
time. To help quantify this uncertainty, the geologistslabel training examples into quantized
probability bins or “categories, ” where t he probabilit y bins correspond to visually distinguishable
sub-categories of volcanoes. In particular,5 categories arc used:

1. where a summit pit, a bright-dark radar pattern, and apparent topographic slope are all
clearly visible, probability 0.98,

2. where only 2 of the 3 criteria in category 1 arc visible, probability 0.80,

3. where no summit pit is visible but there is evidence of franks or a circular outline, probability
0. 60,

4. where only a sumrnit pit is visible, probability 0.50,and
5. where no volcauo-like features arc visible, probability 0.0.

The probability, for category i corresponds to the 1 ncan probability that a volcano exists at a
particular location given that it belongs to category i. These are subjective probability estimates
and were elicited based on lengthy discussions with the planetary geologists. On average 10%,20%,
40% and 30% of the volcanoes belong to the categories 1, 2, 3, and 4, respectively.

Figure 2 shows some typical volcanoes from each category. The use of quantized probability bins
to attach levels of certainty to subjective image labels is not new: the same approach is routinely
used in t he evaluat ion of radiographic image d isplays to generate subjective ROC (receiver operating
characteristic) curves [13, 14]. AnROCisuseful for diagnostic applications since it displays the
full range of possible operating thresholds for a detector (human or algorithmic). In contrast, the
more oft-quoted probability of classification error ¢ itcrion only represents a single point on the
curve (typically the point a which the threshold on the posterior probability for deciding in favor
of class 1 of cach class is sctto0.5).



5.2 llandling Lack of Ground Truth

I the abs ence of absolute ground truth, the goal of a detection system is to be as comparable
in performanceaspossibletodhe geologist’s in terms of labelling accuracy. Absolute accuracy is
not ncas urable for this problem.  Hence, the best an automated detection system can do is to
cmulat ¢ t he geologist’s performance - this point will becomne clearer when performance metrics
arc discussedlater in t he paper. Thus, unlike most supervised classification problems, the class
labels arein fact subjective estimates of t he true class labels as provided by experts (in this
case, plametary geologist §). This introduces two important issues to the traditional supervised
classification problein.,

5.2.1 Class Label Uncertainty During Training

The first issue concerns the training phase of the supervised learning algorithm. Since the measured
class laliels arc uncert ain estimates of the true class labels one can take this into account during
training using a standard statistical decision theory approach. It can be shown that this amounts
to weighting the examples according to posterior class membership probabilities [15]: if an example
has probability 0.8 of belonging to class wyand probability 0.2 of belonging to class W,then the
example can be fractionally assigned during training t o each class according to these weights. In a
logistic regression cont ext one canuse the post crier probability probabilities directly as the target
values. The practical issue is that of determining the posterior class probabilities: humans are
notoriously poor at providing accurate estimates of subjective probabilities [16]. In the case where
there is one set of labels per image, one approach is to map the expert’s categories directly to
posterior probability values as described above.  Preliminary results indicate that the weighted
approach provides no discernible performance improvement over tile non-weighted approach but
these results were based on relatively small data sets [17],. For the case of multiple experts there are
a variety of techniques available in the statistical literature for combining multiple expert ratings.
We have aso explored arelatively simnple probabilistic model which results in a composite estimate
based on t he labels from different experts [18]. In this paper we only usc the relatively simple
non-weighted method for training,.

5.2.2 Performance Evaluation and Class Label Uncertainty

The second primary issue raised by class label uncertainty is that of evaluating relative performance
of bothhumans andalgorithins. If onc dots not know what tile absolute ground truth Is, how can
one evaluate the performance 01 any detector (be it human or algorithmic)? The answer is that
while one cannot in general evaluate absolute detection performance, one can evaluate relative
detection performance. The general approach we have taken is to evaluate the performance of
algorithis andhmanexperts against a reference labheling provided by another expert or set of
experts. Tor example with two experts, one can compare both the algorithm and expert A relative
to tile labeling of expert B, or Band the algorithm relative to A, or A and B individually and
the algoritlim relative to the consensus (joint) labelling by A and13. Once again one can use the
estimated reference class probabilities to weight the performance criteriac if a detector classifies
a local region as a volcano and t he region has a probability of 0.6 (according to the reference
data) of heing avolecano, then onc could weight the performance criterion accordingly, eg., the
loss function would use t he weight 0.6 in evaluating the performance [1 9]. In this paper we will
adopt the simpler non-weighted method of performance evaluation just as we will use the non-
weighted training classification t raining methods. We will sce later that the methodology of choice
for (',\;aluut,ing relative performance involves variations of the receiver operating characteristic (the
ROC).

5.3 Mcthodologics for Collecting Subjective Label Information

Participating in the development of the detection algorithm are planetary geologists from the
Departient of Geological Sciences, Brown University. We arc fortunate to have direct collaboration
wit h two members of t his group who were also members of the Volcanism Working group on the
Magellan Science team. \Wewillrefer to these geologists as geologist A and B henceforth in
this Paper. Both of these geologists have extensive experience in studying both Earth-based and
planctary volcanisim and have published some of the st andard reference works on Venus volcanism




[3, 1 1].Hence, their collective subjective opinion is (roughly speaking) about as expert as one can
find given the available data and our current state of knowledge about the planet Venus.

The standard manner in whicliwe obtain labels is to have alabeller interact with an X-windows
software t00] whereby he or shie uses miouse-clicks to locate candidate volcanoes. Starting with an
initially blank image, the labeller proceeds to sequentially click on the estimated centers of the
volcanoes. Thelabeller is then prompted to provide a subjective label estimate from a choice of
categories 1- 4 as described earlier by default, locations which are not labelled are considered
to have label “5” (non-volcano). Clearly it is possible that based on the visual evidence, for the
same local image patch, the saine label may not be pr ovided by different labellers, or indeed by the
same labeller at different times. In addition to labels, the labeller can also provide a fitted diameter
estimate by fitting a circle tothe feature. Figure 3showsthe result of one such labeHing.

After completing the labelling, the result is an annotation of that image which can be stored
in standard database format the unique key to the image is a label event, which corresponds
to a particular latitude/longitude (to the resolution of the pixels) for a particular labeller at a
particular time (since the same labeller may relabel an image multiple times). It is this database
which provides the basicrefererice framework for deriving est imates of geologic parameters, training
data for t helearniing algorithins, and referenice data for per formance evaluation. A simple form
of spatial clustering is used to determine which label events (from different labellers) actually
correspond to the same geologic feature (volcanc). It is fortunate that volcanoes tend not to
overlap cach other spatially and thus maintain a separation of at least a few kilometers, and also
that different geologists tend to be quite consistent in their centring of the mouse-clicks --- mean
differences of about 2.5 pixels (ISuclidean distance) have been found in cross comparisons of label
data from geologists A and 13, which is reasonable considering the precision one can expect from
mousc location on a screen. 1 Ience, accurat ¢ location of the volcanoes is not in itself much of
problem. Figure 3 shows the results of a typical labeling session with a geologist.

5.4 Volcano Detection Performance of Human Experts
~'able 1 shows the confusion matrix between the two geologists for a set of 4 images. The (i, j)th

Table 1: Confusion Matrix of geologist A Vs.geologist I3.

geologist A
Label 1 Label 2 Label 3 Label 4 Not Detected
geologist BB

Label 1 19 8 4 1 3
ILabel 2 9 8 6 5 5
Label 3 13 12 18 1 37
Label 4 1 4 5 24 15
Not  Detected 4 8 29 16 0

element of the confusion matrix counts the number of label events which correspond to labeller B
generating label i and labeller A generating label 7, where both labels were considered to belong
tothesame visual feature, i.e., were within a few pixels of each other. The (2, 5) (or (5, j%) entries
count theinstances where labeller B (or A) provided label 7 (or 7), but labeller A (or B)did not
provide any label entry (5,5) is defined to be zero. ldeally, the confusion matrix would have all
of its entrics on the diagonal if both labellers agreed (completely on all events. Clearly, however,
there is substantial disagrecment, as judged by the number of off-diagonal counts in the matrix,
For example, label 3's are particularly noisy, in both “directions.” l.abel 3's are noisier than label
4's bhecause there is less variability in the appearance of 4's compared to 3's (4's are simple pits,
3's are less well-defined). About 50% of the label 3's detected by either labeller are not detected
at all by the other labeller. On the other hand, only about 10% of the! label 1's of either labeller
are 1issed by tile other. Thismatrix underlines the inherent ambiguity present in this problem



Figure 3: Magellan SAR image of Venus after labelling by a geologist showing estimated size and
locations of simall volcanoes.

cven ammong experts. Thus, it is important to keep in mind that success for this task can only be
measured ina relative mauner: treating onc set of labels as ground truth, one measures how well
the algorithmic detector compares to a human expel’t in detection performance.

6 Description of the Volcano Detection Algorithm

In this section, we provide anoverview of the algorithm we have developed for finding small volca-
noes on Venus. We have decomnposed the volcano detection probleminto three sub-problems:

« Detection of candidate voleanoregions in the original image
e Feature catraction from the detected local regions
« Classification of t he ext ract edlocal feat ures into volcano and non-volcano classes.

The transformation from high-dimensional pixel space to alower dimensional feature space
achicved by t he feature extraction step is essential given that each volcano can typically occupy
hundreds of pixels combined with the fact that relatively few positive training examples (order of




hundreds)are available. Thus, direct usc of the pixels as input to a classification algorithm is not
practical given the ratio of input dimensionality to the number of training examples, Experimental
results with a variety of feedforward neural network classification] models verified this hypothesis
[20]. The training data were often lincarly sepgTablein pixel space, resulting in an underconstrained
training procedure wher e the model could niemorize the training data perfectly but generalized
poorly to unscen data. Arpanatic

The detection step, whichlocalizes the detector or focuses the attention of the detection algo-
rithimon aloca region, is also clearly essential, as is the fina classification step (since the point of
the exercise is to positively identify candidate volcanoes in a givenimage). A high false aarm rate
at this point is acceptable assuming the classification component can subsequently discriminate
between true detections and false alarms.

Treatment of the three sulyproblems independent ly is suboptimal in general, Nonetheless wc
treat al three problems independently for the pragmatic reason that one can estimate the parame-
ters of each componentin arclatively efficient manner whereas joint estimation of the parameters of
the detection, feature extraction, at 1d classification methods would likely be both comput at ionally
impractical and require nmuch larger training set sizes than we have available for this problem. We
note in passing that the decomposition of statistical pattern recognition problems into a 2-step
process, feature extraction followed by classification, has long been recognized as a necessary evil
in most practical pattern recognition problems [21],

G. 1 Detection of Candidate Volcano Regions

The detection component is designed to take an image as input and produce as output a list
of candidate volcano locations. A reasonable approach to detection is to usc a matched filter,
i.c., alinear filter that matchesthe signal one is trying to find. For detecting a known signal in
white Gaussian noise, the matched filtering approach is optimal, Of course, the volcano problem
does not satisfy these underlying assumptions. The set of observed volcanoes cannot be described
as aknown signal plus white noise, because there is structured variability due to size, type of
volcano, surfaceroughness, etc. Likewise, the clutter background cannot be properly modeled as
white noise. Nevertheless, we have empiricaly found that the following modified matched filtering
approachworks well.

Let vi denote ak x & pixel region around the i-th training volcano. Each region can be
normalized with respect to t helocal DClevel and contrast as follows:

R

o

where #; is the mean of the pixelsin v; and ;s their standard deviation. We construct a modified
matched filter f by averaging the normalized volcano examples in the training data.

A pplying the matched filter to an image involves computing the normalized cross-correlation of
f with cach k x & image patch. The cross-correlation can be computed efficiently using separable
kernel methods to approximate the 2-D kernel f as a sum of 1-D outer products [22].

High response values indicate t hat there is strong correlation between the filter and the image
patch. A typical filter and responsc image arc shown in Figure ??. Candidate volcano locations
arc placed where the matched fi 1 ter response exceeds a threshold that is determined from training
images. Any threshold crossings within a prescribed distance fromn each other are attributed to the
same object and grouped together: the default, distance for the algorithm is 4 pixels.

Detection results on a typical image arc shown in Figure 5. The detected regions of interest are
displayed as boxes overlaid on irnage, while the reference label locations (according to a geologist)
arc shown as circles. Althoughthere arc quite a few false alarms, recall that the goal of the matched
filter detector is to achicve a low-miss rate while reducing the amount of data to be processed by
later stages. Typically the detector iS successful in detecting all the volcanoes from Categories 1
and 2, but misses some from Categories 3 and 4.

Although the matched filter can be justified based onn empirical results, we also offer the following
argwmnents. I'irst, the & X & windowing climinates some of the inherent volcano variability, especially
that due to scale. Focusing onthe central area of the volcano makes the volcano detection problem
more like that of finding a known signal since there tends to be less variability in volcano appearance
at the center naturaly, the disadvantage is that potentially valuable information outside the



Matched Fulter Dusplayed as a Templaie

Response of Matched Filter

Matched Filter Disglayed ,, Sueface Plot

Figure 4: Left: Thematched filter contains ninny of the features that planctary geologists report
using when manualy lo cating volcanoes. In particular, the matched filter encodes a bright central
spot corresponding to a volcanic summit pit andthe left-to-right bright-dark shading. Right:
Response of tile matched filter on the area shownin Figure 1. Bright points indicate a strong
match these will be selected as candidate locations,

kx k window is ignored. Second, normalizing each image patch with respect to the DC level and
contrast causes non-descript clutter areas to resemble zero-Inean, white noise. Hence the filter
f should be suitable for discriminating these non- descript regions from volcanoes --- the primary
purpose of the detector.Qf course, in regions where the clutter has features such as graben (narrow

ridge-like features on the surface of Venus), the matched filter is not ideal and will produce more
false alarms.

6.2 Feature extraction

Since theregions of interest (ROIls)identified by the detector arc embedded in a high dimensional
pixel space, the set of possible features is immense. In the results reported here we restrict our
scarch to the family of features defined by linear comnbinations of the ROI pixel values. This strategy
is eq)uiva]cnt to projecting t he n-dimenstonal pixel space onto a g-dimensional subspace (feature
Space) .

The method of principal components has been used extensively in statistics, signal processing
(Karhunen-Loeve transform), and pattern recognition (Turk and Pentland [23]), The problem

10




Figure 5: T'he output of the matchedfilterdetector on a typical itnage. Circles show the consensus
ground truth volcano locations, while boxes show the candidate regions sclected by the matched
filter detector. Thus, circles with boxes arc detected volcanoes. Circles without boxes are missed
volcanocs and boxes without Cil'tics ave {alse alarins. Since the matched filter acts as prescreening
for other stages, the cost of a missed volcano is high compared to a false alarm.

formulation is to find a ¢-dimensional subspace such that the projected data is closest in L2 norm
to the original data, Thesubspace we seek is spanned 1y the highest-cigenvalue eigenvectors of the
data covariance matrix. Although t he full covariance matrix cannot be computed reliably from the
number oOf exainples we typically have available, the approximate basis vectors can be computed
using the singular value decomposition(SVID)as described below,

Each nornalized training volcano is reshaped into a vector and placed as a column in an nxm
matrix X, where nis the number of pixels in anROI and m is the number of training ROIS which
cont ain volcanocs. With tile SVD., X canbe factored as follows:

X =UsvT (2)

For notational convenience, we will assume m is less than n. Then in Equation 2, U isan n x m
matrix such that UTU = I, x . S i8S m X mand diagonal with the clements on the diagonat (t h €
singular values) in descending order, and V is m X m with V¥V = vVVT =1, .,.. Notice that
any colummof X (cquivalently, any ROI) can be written exactly as a linear combination of the
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columns of U. Furthermore, if the singular values decay quickly enough, then the columns of X
can be closely approximated using lincar combinations of only the first few columns of U. That is,
the first few columuns of U serve as an approximate bhasis for the entire set of examples in X.

The best g-dimensional subspace on which to project is the one spanned by the first ¢ columns
of U.The coluinns of U are shown in Figure 6-b reshaped into ROIs; wc refer to these as features
or templates. Notice t hat the first t en templates exhibit struct ure while the remainder appear very
random. This suggests projecting onto a subspace of dimension < 10. The singular value decay
shown in Figure 6-¢ aso indicates that 6 to 10 features encode most of the information in the
exatnples.

Having determined ¢, we project an ROl into feature space as follows:

T
y:[ul U ... Ug X (3)

where X is the ROIreshaped as ann-dimensional vector of pixels, w; is the i-th column of U, and
y is the g-dimensional vector of measured features. These feature vectors will serve as input to the
classification algorithm.

6.3 Classification

Up to this point in the processing, we have eschewed using counter-examples for training (the
detection filter and PCA features were deterinined solely based on volcanoes). The classifier could
also be designed this way, hut as shown in [21] such an algorithm is subject to considerable error
even in relatively low dimensions because thelocation of the “other” distribution is unknown. To
overcome this problem, we have experimented with various supervised two-clam methods including
quadratic classifiers, decision trees, nearest ncighbors, kernel density estimation, and feedforward
ncural network models. Very similar results were obtained with all of these methods, hence, the
quadratic classificr is favored duc to its simplicity,

The quadratic classifier is optimal if the class-couditional probability densities of the feature
vector y are multivariate Gaussian. Assuming y has the postulated claw-conditional densities, the
posterior probability that an ROI is a volcano can be estimated using Bayes rule:

_ plylwply)
P(vly) p(y|v)p(v) + p(y|0)p(®) !

where p(v) and p(v) arc the respective prior probabilities, and
py) = N, i, Zo)
p(ylo) = Ny, ns ) (5)

with thenotation Ny, j¢, ) denoting the multivariate Gaussian density with mean 4 and covari-
ance ¥.. Onc can show that thresholding the posterior probability in Equation 4 is equivalent to
partitioning the feature space with a quadratic hypersurface.

7 Experimental Comparison of Human and Algorithm Detection
Performance

In this section, we present the experimental results’ obtained using our algorithm to locate small
volcanoes in Magellan SAR imagery. The performance of the algorithm in the volcano-location
task is compared to the performance of individual geologists, relative to a set of reference labels.

7.1 ROC Mcthodologies for Pecrformance Fvaluation

In its simplest form the ROC plots detections (the system/human detects an object at a location
where a volcano exists accordingw the reference list) versus false alarms (the system/human
detects an object where no volcano exists according to the reference list). For a detection system
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Figure 7:FROC comparing the default algorithm and the geologists based on cross-validation of
4 homogeneous images, using the consensus labeling of the 2 geologists as reference.

which produces posterior probabilit ies (such as the Gaussian classifier of the previous section), a
sequence of (Ictect,ioll/false-alarl~l points can be plotted from the test data by varying the posterior
probability threshold at which a test region of interest is classified as a volcano.
Ordinarily the maximum number of possible false alarms is fixed in the ROC context and thus
the x-axis corresponds to the probability of detectinga false alarm. In the detection of objects (such
as volcanoes) in a set of images, the maximui n number of potential false alarms (all pixels not close
to the object) is not well-defined. A practical aternative to the standard ROC (plotting detection
rate versus false alarm rate) for cascs such as this is the so-called “free-response” ROC (FROC)
[24] which plots the detection rate against the false alarm rate per unit area. In the experimental
results described in this paper wc usc the FROC methodology where the x-axis corresponds to
false alarms per square km. It is important to note that the FROC can not be analyzed in the
same manner as the ROC: for example while the area under an ROC curve can be interpreted as
a measure of the quality of the detector there does not exist an analogous quantity for the FROC.

7.2 Experimental Methodology

The experiments described below were conducted using cross-validation: the agorithm was trained
on training images and evaluated on a disoint set of unseen images, and the process repeated over
al such training/test pairs of sets. The exact data (names of the training and test images as found
on the publicly available CD-ROMS) for each experiment are listed in Appendix 1.

Training consists of a 3-step process bascd on the training irnages:

1. Construct the detection filter using the volcarioes in the training images (according to the
reference labels for the training images).

2. Dectermine the principal component directions from the volcanoes in the training images
detected in step 1.

3. Estimatethe parameters of the Gaussian classifier, using the features from step 2 evaluated
on al of the local regions detected in the training data by step 1.

The default settings for algorithin parameters arc described in Appendix 2. In general, algorithm
detection performance has been found to be relatively insensitive to the exact values of these
parameters: experimental results on parameter sensitivity are reported in Section 7.6.

7.3 Experimental Results on A SmallSet of Homogeneous Images
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In previous work we have reported the results of preliminary experiments using cross-validation
on four itnages that cont ained 163 small volcanoes and covered a 150km x 150km area of the planet
(1 7]. The FROC result is shown in Figure 7. All results were scored relative to the geologists
consensus labeling with confidence categories 1-4 treated as true volcanoes. These 4 images were
located rather close together, a factor whose importance will become important as we proceed, For
these 4 images the detection performance of the algor ithm is quite close to that of the geoogists.

7.4 Experimental Results on a Large Set of Homogeneous Images

Thesmallsct of' 4 fmmages desceribed above arc part of a 7 X 8 rectangle of 56 images. Of these
images, 14arc virtually completely blank clue to a gap in the Magellan data acquisition process,
leaving 38 other (42 minus the 4) iinages to work with. Details on which images were used in the
experiments can be found in Appendix 2. The 38 images contained about 480 volcanoes in total
and for each training/test partition there were roughly 400 volcanoes in the training image set and
80 in the test set. T'he performance of the end-to-end algorithm using the default parameters on
6 different partitions of this 38 image data set is shown in Figure 8 using the labels of geologist A
as the reference,and in Figure 9 using the labels of geologist B. The solid curve is the measured
FROC onthe test set for the algorithm. The solid circular symbol in each plot is the performance
of geologist, A (13) relative to the labeling of B (A). The “+” symbol is the performance of one of the
authors (MCI]). Wcnote that the two geologists are operating at different parts of the FROC curve
(comparing t he plots of Figure 8 and Figure 9): geologist B Is relatively conservative relative to
geologist A. The ~lon-expert, MCB, is quite closc in performance to geologist A (Figure 9), tending
to have a somewhat higher fase alarm rate and dightly higher detection rates. The performance
of tile algorithm is reasonable but not as accurate as the humans. In Figure 9 the algorithm is
between 10 to 50 % below the detection accuracy of the humans at a fixed false aarm rate. Using
geologist A asreference, the algorithm performs somewhat better, being between 5 to 20% less
accurate in terms of dctect ion performance (Figure 8).

For a particular training/test partition we evaluated the performance of the matched filter
alone as a det ector and compared its performance to the matched filter combined with the feature
extract ion and Gaussian classifier (the default algorithm). The results are shown in Figure 10 in
the same FROC format as before, The detector has a free parameter (a threshold) that controls its
aggress jvencess in declaring volcanoes, i.e., the trade-off between misses and false alarms. Varying
this parameter generates an F] ROC curve for the detector alone (wit bout the Gaussian classifier).
Observe that the combination of matched filter and classification yields better performance than
using only a matched filter (use of a matched filter alone was proposed in [7]).

7.5 Experimental Results on Inhomogeneous Images bon

In this experitnent 36 images were selected from random locatior sy the planet. These 36 images
contained significantly greater variety in shape, noisiness, and size t the sets of 4 and 38 used
in the earlier experiments. There were about 670 volcanoes in total in the 36 images, with about
500 in the training set and 170 in the test set for cach partition. Figure 11 shows the FROC
performance from 4 different partitions of the data into 27 training images and 9 test images
(details in Appendix 2). Clearly the system is performing worse than on the more homogeneous
image sets. For example at the 0.001 fase aarm rate/km? the detection performance is in the
20-40% range whereas for the 38 homogeneous images the detection rates were consistently in the
50- 65% range. For this data set the reference labels arc consensus labels (where geologists A and
B jointly labeled the images): for the few images (of the 36) where we have individua labels in
addition to the consensus labels, tlic geologist’s detection performance appears to be in the same
general region as it was for the homogeneous images. Thus, one can conclude that the volcano
detection approach does not handle image inhomogencity as well as human experts. This is to be
expected since both the principal components and Gaussian classification models are essentially
based on the assuinption that the volcano population can be described in a unimodal fashion in
terms of pixelappearance and size, whereas with inhomogeneous images there may be multiple sub-
classes present. ‘1’ 1hus, more complex models are likely to be necessary to handle the inhomogeneous
image case.
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7.6 Algorithm Secnsitivity to Parameter Values

How dotsttile algorithm’s detection performance vary if the various parameters are changed? Ideally
onc would like a relatively stable operating range so that the algorithm is not over-sensitive to the
exact valucs of the parameters. We do not include in this paper any sensitivity results on the size
of the detectionor principal component windows or the detection clustering threshold or radius
of detection parameters: t hc defaul t values for these parameters were chosen based on knowledge
of tile typical volcano sizes and informal experimental results have shown the algorithm to be
relatively insensitive to the exact values.

Of greater interest is the algorithm sensitivity to the threshold parameter used at the matched
filter detection stage and the number of principal components used as features for classification. In
both ¢ ases below the detection rate is estimnated as a function of the parameter of interest for three
different false alarm rates. The three rates chiosen were 0,0005, 0.001, and 0.002 false alarms per
kin?whichroughly correspondto t herange of’ opcrat ing points used by humans. For t he purposes
of illustration the results below arc for onc particular train/test combination (combination (a) from
the previous section, train on 32 images and test on 6). However similar qualitative results have
been observed across a variety of training and test image sets for both of these parameters, In both
cases ouly the parameter of interest is varied and the other parameters are held at their default
values: investigations into the multivariate performance dependence on multiple parameters was
not feasible given t he amount of data available for these experiments.

7.6.1 Sensitivity to Matched Filter Detection Threshold Parameter

Note that the operating detection rate from thematched filter is necessarily an upper bound on
the detection rate of classification algorithm since volcanoes missed at the matched filter stage are
missed forever. Thus, it would appear that onc would prefer to be at the highest possible matched
filter detectionrate. | lowever, it is not clear whether a somewhat lower detection rate might be
better in an overall sense since there may be amuch lower proportion of false alarms for the classifier
to deal withinthefeature space.

InFigurel2the detection rate of the classifier is plotted as a function of the matched filter
threshold, for thet hree different fixed false alarm rates. In the 0.3 to 0.45 range of operation,
performance appears somewhat sensitive to the exact value of the threshold, but nonetheless this
appears to the optimal operating range. If the threshold is below 0.3, the detection rate tails off
because although the det ector is detecting more true volcanoes this is traded-off with the fact that
it is detecting orders of magnitude more fase alarms. T'he increase in false alarms has much more of
an effect interms of final classification than therelatively small increase in true detections. Above
0.45, eventhough there arc fewer fase aarms detected, there are too fcw volcanoes detected by
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the matched filter, and thus the overall detection performance of the algorithm is upper-bounded.

7.6.2 Sensitivity to Number of Principal Components

The default algorithm uses thefirst 6 principal component as features. the number 6 was chosen
as a trade-off between retaining a certain mumnber of the more informative principal components
and keeping the feature space dimensionality low. Figure 13 shows how the detection rate varies
for different numbers of principal components, for three different fixed false alarm rates. Apart
from a marked decrease ‘in detectionrates mice the number of features goes below 4, detection
performance is relatively constant over therest of the range.

8 Lessons Learned with Implications for Digital Image Library
Applications

8.1 The Feasibility of Lemming from Pixel-Level Descriptions

While it is appealing to consider a user poiuting to a few examples of interest and having the
system then learn a detection model, such a “bottom-up” approach based on learning alone may
not scale well to difficult problems. AS pointed out in the paper by Geman, Bienenstock and
Doursat [25], an algorithm which learns from pixels alone is operating in such a high-dimensional
space that statistical estimation theory predicts that prohibitively large amounts of training data
arc required to reduce the variance of the estinates, i.e, 10 construct an accurate detection model
from data. The authors conclude that the use of appropriate prior knowledge embedded in the
model is the only practical way to circumvent this problem. Ineflect, the principal components
methodology described earlier embodies a limited for m of prior knowledge in the form of a belief
that the volcano population can be described as lincar combinations of a few “basis’ volcanoes.
However, the performance on the inhomogencous image sets shows that this particular prior bias
may beinappropriate for the more general volcano detection problem where sub-classes of volcanoes
may be present.

On the other hand it is diflicult to secc how a purely model-based, non-adaptive approach could
work for a problem of this nature. The Geologists provide descriptions of the visual cucs they use
in detecting volcanoes such as “bright-dark pairs,”“circular outline, ” etc. Translating these high-
level descriptions into pixel-level constraints is virtually impossible since standard shape extraction
methods rased on edge and segiment informat ion arc not well- matched to noisy natural images such
as the volcano data.
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‘I'bus, a middle ground between the model-based and learning approaches appears likely to be
the most practical avenue for building aut omated recognition syst ems for datasets of this nature.
In problems where the feature definition problem can be solved Ul)f'milt by the user, the recognition
rates are typically immuch higher (e.g., [26]). For more genera and diflicult problems, an interactive
capability for feature definition involving both the expert and the image data is required.

8.2 Subjective Llements in Image Analysis

One of the primary lessons learned from this project is the importance of the subjective human
clement in model training and performance evaluation. Image analysis by humans is a subjective
process. Thus, for many digital library tasks wheret he quality of the result is subject, to human
interpretation it is critical that the sill.),jcctive aspect of the! process is taken into account. For
the volcano project we have primarily adopted the simple approach of fixing one expert’s (or set
of experts)subjective estimate as ground truth for each experiment and then evaluating all other
estimates against this reference. However this is suboptimal int he sense that in the worst case
onc expert’s opinion might be no better than random and performance estimates using that expert
as reference should receive lower weight.  We have investigat ed sorne probabilistic techniques for
modelling multiple expert opinions [18] and tlicre is a significant body of work in the statistical and
biomedical literatures on this topic [27, 28, 29]. However, since little or none of this work concerns
rat ing expert opitiion based onvisual stimuli there is clear] y room for much more work on this
topic given its fundamental importance in problems involving detect ion and cataloging subject to
human review,

8.3 Invariance issues

Despite its intuitive appeal, t 1icreare anumber of arguments against using the sort of simple
template-based approach for detection and cataloging we have described in this paper. Most
notably, the proposed method is not invariant, with 1espect to translation, rotation, scaling, and
direction of illumination. A certain (hopefully small) number of templates will be required in order
to represent t he inherent variability of an object; any additional variability due to spatial shifting,
rotation, scaling, or noise will dramatically increase the number of templates required to encode
the object. For example the performance of the system was significantly worse on less  homogeneous
Sets of training and test images (Figure 11). Thus, the remplat c-based approach may not be feasible
unless appropriate normalization steps are taken prior to feature learning. These invariance issues
need to be resolved in order to develop a genera systerry; however, for the volcano problem they are
not so critical since (1) the detection step effectively “centers’ the volcanoes well, (2) the volcanoes
have significant rotational symmetry, (3) the central area of the volcanoes (on which the templates
are based) are relatively insensitive to overall scale, and (4) the direction of illumination is known
and relatively constant.

Note that for general tasks of cataloging objects in digital libraries consisting of uniformly
gathered ant] processed data (e.g., a fixed remote sensing platform, documents scanned from a
single source, or records of patients treated in some uniform manner) a certain degree of invariance
can be expected. The volcano problemisone such example.

8.4 The Need for An Adaptive Approach

The volcano detection and cataloging problem is a good example of a situation that is becoming

all oo?(olmnon in many ficlds, spanning science data analysis, medical image analysis, commercial ¢
graphic arts, survcillance, and so forth. The volumes of data are so large that comprehensive {t‘??
manual analysis and search is not possible. Since most users are not programmers or experts in “
patternrecognit ion, an adaptive approach based on learning from examples is gradually becoming

a necessity in some settings. Work on developing robust algorithins to address such needs is very
much needed.
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9 Conclusion

This paper discussed t hie general problem of t ranslating alarge iinage dataset into a catalog of ob-
jects of interest, inparticular, the problem of detecting and catalog ing small volcanoes on the surface
of Venus. Scientific users are often not interested inthe image data per se but in derived products
such as catalogs and libraries of objects of interest:these catalogs form the basis for quantitative
scienti fic analysis. A trainable detection system for automatically generating volcano catalogs was
discussed, lixperimental results showed that the system is approaching human performance on
hotogencous sets of images but performs poorly on inhomogeneous image sets. Combining prior
information with dataand modeling subjective human opinion were both identified and discussed
as key issues in problems of this nature.

This Paper aiims to provide an example of an hnportant large-scale application in the area
of aiding humans in the analysis of alarge digital library, A secondary aim is to emphasize the
need for a natural interface between humans and digital libraries: onc where the user can interact
directly with thelibrary contents without the necd for a programmmer (or a team of programmers)
intheloop to produce customized pattern rccognizers for each cataoging and recognition task. A
learning-frorn-examples approach could provide the basis for sucha practical and natura interface
for certain classes of lar?,c-scale digital image data sets.

Acknowledgements

Theresearch describedin this report has been carried out in part by the Jet Propulsion Labora-
tory, California | ustitute of Technology, under contract with the National Aeronautics and Space
Administration. Support was provided primarily by NASA Office of Space Access and Technology
(SAT - Code X), aJ 'l. DDF award, and NSF research initiation grant IRI 9211651. We would
like to thank geologists Jayne Aubele and Larry Crurnpler of Brown University for their assistance
in labeling and analyzing the Magellan data. We would also like to thank Maureen Burl and Joe
Roden for help indeveloping the software and user-i)tcrfaces,

References

[ Magellan at Venus: Special Issue of the Journal of Geophysical Research, American Geophysical Union,
1992.

[2] NSSDC News, vol. 10, no.1, Spring 1994, available from request@nssdc.gsfc. nasa.gov.

[3] Guest, J. E.etal.1992. Small volcanic edifices and volcanism in the plains of Venus. Journal of
Geophysical Rescarch, vol.97, 10 K10, pp.15949-66., October 25, 1992,

[4 J A. Richards, lemote Sensing lor Digital image Analysis, Springer-Verlag, Berlin, 1986.

[5] A. M. Cross, “Detection of circular geological features using the Hough transform, ” Int. J. Remote
Sensing, 9,10.9, 1519-1528, 1988.

[6] J. Skingley and A. J. Rye, “The Hough transform applied to SAR images for thin line detection,”
Pattern Recognition Letters, 6, 61-67, June 1987.

[ C.R.Wiles and M. R. B. Forshaw, “Recognition of volcanoes using correlation methods,” Image and
Vision Computing, vol.11, no.4,pp.188-196,1993.

[§] R.S.Saunders et al,, Magellan mission summary, Journal of Geophysical Research, vol.97,no. E8,
pp.13067- 13)90, August 25,1992,

9] Science, special issue on Magellan data, April12,1991.

22




[10]

(11

(12

(13]

[14]

[16]

(17

(18]

[19]

0]
[21]
[22]

23]
[24]

23]

[26]

[27]

[28]

[29]

1'. Cat t crmole, Venus: The Geological Story, Baltimore, MD: Johns Hopkins University Press, 1994.

J. C. Aubele and E. N. Slyuta, “Small domes on Venus: characteristics and origins,” in Farth, Moon
and Plancts, 50/51 , 493-532, 1990.

G. H. Pettengill et al., “Magellan: radar performance and product s,” Science, vol.252, 260- 265, 12
April 1991,

1. C.Bunch,J. F. Hamilton, G. I{. Sanderson and A. H. Simmons, “A P'rcc-Response approach to the
measurement and characterization of radiographic-observer performance,” J. Appl. Photo. Eng., vol.4,
in0. 4, pp.166-171,1978.

M. S. Chesters, “Human visua perception and ROC methodology in medical imaging,” Phys. Med.
Biol.,vol.37, 110.7, pp.1433-1476,1992.

I’ Smyth, ‘Learning with probabilistic supervision, * in Computational Learning Theory and Natural
Learning Systems 8, '1'. Petsche, S. Hanson, and J. Shavlik, Cambridge, MA: MIT Press, pp.163-182,
1995.

). Kahneman, I’. Sovic, and A. Tversky (eds.), Judgerment under Uncertainty: Heuristics and Biases,
Cambridge University Press, 1982.

M.C.Burl, U. M., Fayyad, I’. Perona, P. Smyth, and M. P. Burl, “Aut omating the hunt for volcanoes on
Venus," in Proceedings of the 1994 Computer Vision and Pattern Recognition Conference, ¢ VPR-94,
Los Alamitos, CA: |EEE Computer Society Press, pp.302-309,1994.

P.Smyth, M. C. Burl, U. M. Fayyad, P. Perona, ‘Knowledge discovery in large image databases:
dealing with uncertainties in ground truth,” in Advances in Knowledge Discovery and Data Mining, U.
M. Fayyad, G. Piatetsky-Shapiro, I'. Smyth, R. Uthurasamy (eds.), AAAI/MIT Press, in press.

M. C. Burl, U. M. Fayyad, I>. Perona, and I. Smyth, “Automated analysis of radar imagery of Venus:
handling lack of ground truth,” in Proceedings of the /’EE Conference on Image Processing, Piscataway,
NJ: IEELPress, vol.IlI, pp.236-240, 1994.

P. Baldi, personal communication, 1994.
K.Fukunaga, Satistical Pattern Recognition, 2nd cd,, AcademicPress, 1990.

S. Treiteland J. Shanks, “The design of multistage seperable planar filters” IEEE Trans Geoscience
Electron, GE-9(1):10-27,1971.

M. Turk and A. Pentland. “Eigenfaces for recognition.” J. of Cognitive Neurosci.,3:71-86, 1991.

D. 1'. Chakraborty and L. H. L. Winter, “Free-Response methodology: dternate analysis and a new
observer-per formance experiment,” Radiology, 174, 873-881, 1990.

S Geman, E. Bienenstock and R. Doursat, ‘Neural networks and the bias/variance dilemma,” Neural
Computation, 4, pp-1-58,1992.

U.M. Fayyad, I’. Smyth,M. C. Burl, ancl P. Perona, P., “A learning approach to object recognition:
applications in science image database exploration and analysis,” in Farly Visual Learning, S. Nayar
and T. Poggio (eds. ), in press.

J. S. Ucbersax, “Statistical modeling of expert ratings on medical treatment appropriateness,” J. Amer.
Statist.Assoc., vol.88, 10422, pp.421- 427, 1993.

A. Agresti, “Modeclling patterns of agreement and disagreement,” Statistical Methods in Medical Re-
scarch, vol.1, pp.201 218, 1992.

A. P.Dawid and A. M. Skene, “Maximum likelihood estimation of observer error-rates using the EM
algorithm ,” Applied Satistics, vol.28,no.1, pp.20 -28, 1979.

23




Appendix 1: Obtaining the Magellan Dataset and Lists of Images
Used in the Experiments

How to obtain the Magellan Images and Labels

Note tothe Referees ant] Editor: Wcare in the process of constructing a WWW page which
will alow direct access to both the image data and lalel data described in this paper. This WWW
page will he accessible via http: //www-aig. jpl.nasa. gov/mls/mgn-sar.

Lists of which Images were used in each Experiment

Note that location of an image is indicated by a unique directory name (or “product”) of the form
fabnayz where ab is the longtitute, n denotes the Nort hern Hemisphere in this case, and zyz is the
latitude. Fach product (directory) contains 56 images arranged in a 728 contiguous grid, numbered
from top left to bottom right.
The set. of 4 images camme from directory 30n332 and consisted of : {f05, {ff13, ff20, and ff21.
The set, of 38 images consisted of 6 sets of 6 images from directory f30n332 where each image
is denoted as ffry and the xys are organized as follows:

. set (a) 22, 24, 28, 39, 52, 55
. st (b) 04, 06, 32, 36, 47, 54
. set (¢) 07, 14, 23, 37, 40, 44
. set (d) 03, 15, 19, 31, 38, 53
. set () 08, 12, 27, 30, 43, 56
. st (f) 11, 16,29, 35, 46, 48

In addition there were two extra images, ff45 and fI51 which were not part of any test set and were
used in all 6 training sets. The remaining images wer e primarily blank and were not used in the
experiments. Each experiment consisted of using one of (a), (b), (¢), (cl), (e), and (f) as test set
and training on the other images plus ff45 and fI51.

The set of 36inhomogencous images were broken down into 4 sets of 9 images, (a)-(d), where
for each experiment each of (a)-(d) was denoted the test set and the algorithm was trained on the

other 3 sets, The sets were:

. Set (a): 1401272-1134, f05s312-1133, £30n281-{f19, fH50n197-1126, £25n284-137, f40n272-ff24, f10n211-
{54, f10n279-1138, £75n351-147.

. set (b): f50s088-1i36, {10s301-1f19, {75n237-1f5, f401n286-{139, f0511284-1f44, f60n302-{137, {00n279-
{137, f40n244-1150, f15n129-{f08.

. Set (c): f] On267-f101, f45s012-151, £255302-F18, £15n020-153, f30n332-1f12, £255302-1f30, f00n318-
flo1, f05s211-1121, £25n229-147.

o set, ((1): f] On076-1123, f151n283-1127, 10s245-1138, f] 5n283-1149, f45n188-ff20, f055290-1f43,120s257-
fI54, 12551 98-1154, £55n291-1145.

For each image the x,y coordinates of the volcanoes as labeled (cstimated) by geologist A, B or
the conscnsus of both (depending on which is available for each image) is available from the WWW
page mentioned above.
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Appendix 2: Default Settings for A lgorithm Parameters

Inall of the experiments in the paper, unless otherwise stated, the algorithm parameters were set
to default, values whose values were determined manually from experimenting with the set of 4
images described in earlier work [17]. In particular,

e In training, all volcanoes are treated cqually, i.c., the categories1-4 are not used to weight
the training in any way.

« The window width k7 for the detector was 30 pixels.
« The threshold value for the detector was 0.35.

« The window width k2 for the derivation of the SVD decomposition was 15 pixels: these 15 x
1 5 windows were obtained by subsampling the 30 x 30 local regions by a factor of 2.

« The threshold for the detection clustering algorithm was 4 pixels,

« The number of principal components (features) used for clarification was 6.

. The classification method used was a maximum-likelihood Gaussian classifier, with indepen-
dent full- covariance matrices for each class.

« Let 7y 5 be half the estimated radius (according to the reference list) of a volcano close to a
detected location. A region was declared a detection if the Euclidean distance d between the
location of the detection and the location of the volcano on the reference list, was less then
To.5,unless 0.5 < 5 pixels in which case 7T0.5 is replaced by 5, or To.5 > 15 pixels in which
case 7o0.5 is replaced by 15. Thus, the criterion for a detection was that the detected location
be within half the radius of the reference volcano unlessthe radius is extremely small or
ext remely large, Ernpiricall y it has been found that volcanoes rarely overlap thus effectively
climinating the problem of detecting multiple volcanoes which arc very close together,
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